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Abstract: This paper is based on rich experience gained in the area of computer science education and 
it could serve as an inspirational material directed to all educators developing students’ algorithmic 
thinking and programming skills. The foundation a developer gains at the beginning of his/her career 
plays a crucial role. An essential part of studies at faculties preparing students in the area of computer 
science is the development of student’s ability to think algorithmically. Students must be able to 
create various algorithms solving given problems starting with easy ones and consecutively increase 
their algorithmic knowledge and shifts during studies till the level where they deeply understand much 
more complex algorithms. The aim of this paper is to introduce our approach that has proven to be 
successful in the optimization of teaching and learning a subject developing algorithmic thinking of 
beginners. This is followed by a discussion of the benefits of puzzles and logical games, solved within 
subjects, dealing with graph algorithms and enabling further development of students’ algorithmic 
thinking as well as logical thinking and imagination, i.e. skills needed for deeper understanding more 
complex algorithms. 
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1 Introduction 
An essential part of studies at faculties preparing 
students in the area of computer science is the 
development of student’s ability to think 
algorithmically. Students must be able to create 
various algorithms solving given problems starting 
with easy ones and consecutively increase their 
algorithmic knowledge and shifts during studies till 
the level where they deeply understand much more 
complex algorithms.  

Education at secondary schools and colleges in 
the area of informatics is directed mainly to a user 
attitude in the Czech Republic. Only students 
attending optional subjects dealing with 
programming languages are familiar with creating 
algorithms. Thus a lot of students coming to 
universities are without any algorithmic knowledge 
at the beginning of their studies.  

There are many different theoretical researches 
which deal with the question of how to consequently 
develop algorithmic thinking of students. Their 

basic aim is to improve the quality of teaching and 
students’ self-learning. 

 
In this paper, as an inspiration, we introduce at 

first our approach to the development of algorithmic 
thinking of beginners within the subject Algorithms 
and Data Structures. (Remark: Thanks to the fact, 
that our approach has proven to be successful, we 
have already introduced it at conferences, cf. [6], 
[8], [13]). 

 
It is followed by a discussion concerning further 

development of algorithmic thinking by our students 
within subject Graph Theory and Combinatorial 
Optimization, where more complex algorithms on 
graphs have been explained.  

 
The principles that we apply in our teaching will 

be introduced as well as some puzzles and logical 
games developing students’ logical thinking and 
imagination. 
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2 Algorithmic Thinking Development 
University departments that train students in 
computer-related disciplines still mostly teach the 
algorithm design jointly with teaching a certain 
programming language. Former textbooks such as 
[5], [18] which were used at the Czech universities 
in the past dealt with structured programming 
languages. On the contrary, the recent trend is 
directed mostly towards object oriented languages; 
see e.g. [2], [4], [14], and [16]. However, at 
conferences there have been still long discussions 
regarding what kind of programming is suitable for 
beginners. Protagonists of object oriented languages 
argue that students beginning with structured 
programming acquire habits that cause big problems 
for them when using object oriented languages.  

To avoid the mentioned possible problems, our 
approach that we have been using for many years in 
the subject Algorithms and Data Structures is based 
on an imagination of a brick-box, where only 
several base elements are available from which 
children are able to create incredible buildings, i.e. 
when we lead our students’ first steps in the creation 
of algorithms we explain to them that it is like 
building interesting objects out of just a few basic 
elements. In the subject Algorithms and Data 
Structures it means that we start our teaching with 
basic algorithmic structures (basic elements from 
the brick-box) and typical algorithmic structures (a 
few parts made out of these elements) and then we 
let students get into the secrets of making whole 
algorithms (building whole constructions). 
 
 
2.1 Lectures and lessons 
We do not use any programming language in the 
subject Algorithms and Data Structures, students 
write algorithms on paper in Czech meta-language. 
The used Czech meta-language is nothing more than 
the Pascal programming language basic commands. 
(Remark: We have decided for Pascal programming 
language because it was created by Nicklaus Wirth 
especially for educational purposes, see [18].) 

At the lectures we explain all the structures of 
algorithms, at first only those which use single 
variables. We always try to use names of variables 
that describe their use. Obviously, in the beginning 
examples of algorithms are demonstrated 
graphically by developing diagrams. In the diagrams 
we use two types of shapes only: a rectangular for 
commands and a rhombus for conditions. The action 
of each algorithm is illustrated by a step-by-step 
procedure for suitable initial values.  

After a thorough exercise of basic algorithms on 
problems using single variables (above all those 
dealing with unknown number of vales, because 
these tasks often trouble the students) we proceed 
and explain the data structure one-dimensional array 
and later two-dimensional array as well. 
During lessons students apply the acquired 
knowledge to a variety of tasks. After some time 
when students have prepared their solutions on 
paper, each task is illustrated by two or three 
students at the blackboard and their solutions are 
compared and discussed by all students. On the one 
hand this means that students are led to try to find 
more solutions to the given task and to be able to 
understand the efficiency of algorithms as well. On 
the other hand when incorrect solutions occur 
among the presented solutions the teacher has an 
opportunity to discuss with students where the 
problem is.  
 
 
2.2 Self-study and the feedback 
There is an important question. How can students 
get feedback for their solutions written on paper in 
the Czech meta-language when studying at home? 
There are a lot of tasks that we give our students to 
solve. They solve not only the whole tasks but we 
also let them complete prepared algorithms and 
determine values of variables similarly as you can 
see in the following examples.  

Example 1 (single variables) 
Complete the algorithm which calculates and 

writes out the following value of sum:  
If x ≤ y then it is the sum of numbers 

x, x + 1, …, y, and if x > y then it is the sum of 
numbers x, x - 1, …, y. 
begin 
   read(x); 
  read(y); 
   sum := .....; 
   number := x; 
   if x ..... y then 
   for number := ..... to ..... do 
    sum := sum + .......... 
   else 
   while number ..... y do 
  begin 
     sum := sum + ..........; 
     number := number - 1; 
   end; 
   write("The sum of integers from 
",x," to ",y," is equal to", sum, 
"."); 
end. 
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Example 2 (one-dimensional array) 
Complete the algorithm solving the following 

task. In the sequence of n integers saved in the array 
a (in items a[1] , ..., a[n]) determine the first 
minimum value and then sum all integers behind the 
found minimum value.  
begin 
  minimum := a[1]; 
  sum := ..........; 
  for i from 2 to n do 
   begin 
    sum := sum + ..........; 
     if a[i] ... min then 
     begin 
       minimum := ..........; 
       sum := ..........; 
     end; 
   end; 
end. 

 
Example 3 (single variables) 
Determine what value will appear in variables x, 

y, and z after carrying out the following algorithm 
begin 
  x := 1; 
   y := 3; 
   z := x * y; 
   while z < 8 do 
    z := z + 2; 
   if x > y then 
     y := x + y; 
end. 

x = .....   y = .....    z = ..... 

 
Example 4 (one-dimensional array) 
There are n integers saved in the array a (see the 

Table 1). Determine the values in the array a after 
finishing the following algorithm. Write them to the 
table. 
begin 

n:=6; 
x:=a[1]; 

 i := 2; 
 while i ≤ n - 1 do 
 begin 
 if a[i] > x then 
 begin 
 a[1]:= a[i]; 
 a[i]:= x; 
 end; 
 i := i + 1; 
 end;  
end. 

 

a[1] a[2] a[3] a[4] a[5] a[6] 
11 8 19 7 16 17 
      

Table 1 Table of integers saved in the array a 

Example 5 (two-dimensional array) 
Integers are saved in the two-dimensional 

array a. Determine the values in the array a after 
finishing the following algorithm. Write them to the 
table Final position (see the Table 2). 
begin 
  m := 4; 
  for i := 1 to m do 
    for j := 1 to m - i + 1 do 
       a[i,j] := (i + j) mod 2; 
end. 
 
Starting 
position 

 

Final position 

 1 2 3 4  1 2 3 4 

1 1 2 5 8 1     

2 3 9 6 7 2     

3 8 7 5 3 3     

4 4 2 5 8 4     

Table 2 Table of integers saved in the array a 
 

The answer to the question given at the beginning 
of this section is: Students can practise their 
knowledge using program ALGORITHMS 
developed by our student within his thesis [16] in 
the Delphi environment.  

Using the program, students can place their 
solution of the given task, written in Czech meta-
language, into the program and the program shows 
them step-by-step how their algorithm works and if 
it is correct or not. 

The program also shows the actual values of used 
variables in each step of the algorithm’s process. In 
this way students can place prepared algorithms 
given in tasks (cf. examples 3-5 above) into the 
program and see the final values of requested 
variables. 

Moreover, using the program on lessons mistakes 
in incorrect algorithms can be emphasized on 
suitable entrance dates together with the values of 
used variables (cf. text in the section 2.1 above: On 
the other hand when incorrect solutions occur 
among the presented solutions the teacher has an 
opportunity to discuss with students where the 
problem is.). 

 
The program ALGORITHMS is user friendly and 

its functions are arranged to be intuitive and at the 
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same time to remind professional editors and 
debuggers of well-known programming languages, 
which also facilitates the subsequent transition to 
them. Because many users are beginners the 
program is free of many unnecessary features which 
would rather complicate its use at this level.  

With the ability to be localized into different 
languages the program can theoretically be used in 
the user´s own mother tongue, including the 
possibility to define own keys of used meta-
language. [11] 

The design of the program is shown on Fig. 1. 
 

 
Fig. 1 Program ALGORITHMS - main window 
with an algorithm 
 
 
3 Development of Logical Thinking 
Logical thinking is an important foundation skill. 
Albrecht in his book [1] says that the basis of all 
logical thinking is sequential thought. This process 
involves taking the important ideas, facts, and 
conclusions involved in a problem and arranging 
them in a chain-like progression that takes on a 
meaning in and of itself. To think logically is to 
think in steps.  

Let us add that sequential thought can be 
enhanced through the development of algorithmic 
thinking and that algorithmic thinking can be deeply 
enhanced in the subjects dealing with combinatorial 
optimization. 

Thus after gaining deep insight into the creation 
of basic algorithmic constructions in the subject 
Algorithms and Data Structure and practising the 
acquired knowledge within subjects dealing with 
programming languages, students’ logical and 
algorithmic thinking is deepened in the subject 
Graph Theory and Combinatorial Optimization. The 
aim of the subject is not only to develop and deepen 
students’ capacity for logical and algorithmic 
thinking, but also to develop student’s imagination. 

Well-prepared students should be able to describe 
various practical situations with the aid of graphs, 
solve the given problem expressed by the graph, and 
translate the solution back into the initial situation. 
[9]  

Our approach can be characterized by the 
following basic principles that we apply in our 
teaching.  
• When starting an explanation of new subject 

matter, a particular problem with a real life 
example or puzzle is introduced as a motivation 
and suitable graph-representation of a problem 
is discussed.  

• If possible, each concept and problem is 
examined from more than one point of view 
and various approaches to the given problem 
solution are discussed with respect to the 
already explained subject matter.  

• In addition to words visualization of the 
particular issue as well as it is possible is done.  

• The explained topic is thoroughly practiced and 
students’ own examples describing the topic are 
discussed.  

• Using the constructed knowledge and suitable 
modification of the problem solution, we 
proceed to new subject matter. 

 
In the following sections let us focus on the role 

of suitable puzzles and logical games used in 
education of the discussed subject at first.  

On several puzzles of different level of 
difficulties we discuss a possibility how to enhance 
the students’ ability to find out the appropriate 
graph-representation of given task (i.e. how to 
develop their logical thinking and imagination) and 
together solve it using appropriate algorithm (i.e. 
how to develop their algorithmic thinking). Using 
logical games we can also practise and discuss 
various topics in an enjoyable way. Two logical 
games will be introduced. 

The section ends with brief description of a 
multimedia program that is not only a substantial 
help to students in their self-study but it also helps 
teacher explain all needed concepts and the process 
of particular algorithms on lectures and seminars. 
 
 
3.1 Puzzles 
In this section we introduce at first two puzzles, 
chosen from the Czech semi-monthly magazine 
Hádanka a Křížovka (Riddle and Crossword 
puzzle in English), suitable to be solved in topic of 
graph theory dealing with isomorphism.  
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Isomorphism is an important basic graph theory 
concept explained in any textbook dealing with 
graph theory. Let us remind ourselves of its 
definition [1]: 

Two graphs G = (V, E) and G*= (V*, E*) are 
called isomorphic if a bijection f: V → V* exists 
such that {x, y} ∈ E  if and only if {f(x), f(y)} ∈ E* 
holds for all x, y ∈V, x ≠ y. 

A simple explanation of isomorphism is that two 
graphs are isomorphic if they have the same 
“structure” and differ only by the names of their 
vertices and edges. A nice motivation suitable to the 
concept is given in the following puzzle. 

Detective office 
Two detectives investigated the same group of 

people and used graph-representation for the 
relation between each pair of people who know each 
other. The first detective represented the people by 
letters, the other detective by numbers (see Fig. 1 
and Fig. 2). Our task is to find out the connection 
between their graph-representations. 

 

 
Fig. 1 The first graph-representation 

 
Fig. 2 The other graph-representation 

 
To solve this simple puzzle, an isomorphism 

must be found between the two graphs illustrated in 
the figures above. The puzzle doesn’t demand a 
graphical interpretation of the given task because it 
is set directly in the graphs. The solution can be 
found quiet easily considering the degrees of 
vertices. 

The following puzzle is more complex (cf. [9] 
[12]) particularly in regards to finding out an 
appropriate graph representation of the task.  

Cities 
Try to place the names of cities Atlanta, Berlin, 

Caracas, Dallas, Lima, London, Metz, Nairobi, New 
York, Paris, Quito, Riga, Rome, Oslo and Tokyo 
into the frames of the given map (Fig. 3) so that no 
city shares any letter in its name with any cities in 
its adjacent frames (horizontal or vertical). 

To solve this puzzles using graph theory it is 
necessary first to make a graph-representation of the 
map and also of the relation between two cities that 
do not contain the same letter in their names (see 
Fig. 4 and Fig. 5), and then to find an isomorphism 
between the graph representing the map and a 
subgraph of the graph representing the relation. 

 
Fig. 3 Map of the puzzle Cities 

 
 

 
Fig. 4 Graph-representation of the map given in the 

puzzle Cities 
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Fig. 5 Graph-representation of the relation given 

in the puzzle Cities 
 
The map and also the determined relation 

between two cities have obvious graph-
representation for everyone experienced in graph 
theory.  

However, to consider the given rule as the 
relation “be adjacent” defined as “city x is adjacent 
with city y if there is no same letter in their names” 
and find out the appropriate graph-representation, 
i.e. a graph, whose vertices represent the cities and 
edges corresponding with the relation “be adjacent”, 
cause students mostly difficulty because the puzzle 
Cities is introduced in the subject in one of the first 
lessons. The puzzle serves as a very useful first step 
into the development of students’ ability to „see“ 
graph-representation of a task. 

 
Considering the vertices with the biggest degree 

and their neighbors (vertex 6 with the degree of 7 
must correspondent with vertex Me, the only vertex 
with a degree larger or equal to 7) there is no 
problem changing the view of the graph given in 
Fig. 5 to form another view (see Fig. 6) from which 
the solution (see Fig. 7), i.e. subgraph isomorphic to 
the graph on the Fig.4, is quite clear. 

 

 

 

 

 

 

 
Fig. 6 Another picture of Fig. 5 

 
Fig. 7 Solution of the puzzle Cities 

 
Before we start to deal with the others puzzles let us 
briefly remind the well-known Breadth-First-Search 
algorithm. We describe it using Czech meta-
language (see the section 2.1) and as an edge 
colouring process. We also introduce the definition 
of the Breadth-First-Search Tree, appropriate 
theorem and statement discussed thereinafter in this 
paper.  
begin 
initially all vertices and edges of 
the given connected undirected graph 
G, with n vertices and m edges, are 
uncoloured. Choose any single vertex, 
insert it into FIFO, colour it blue 
and search it. 
while FIFO is not empty do  
begin 
 choose the first vertex x in FIFO; 
 if there is an uncoloured edge {x,y} 
 then   
 if the vertex y is uncoloured then 
 begin 

search and colour blue both the 
vertex y and the edge {x,y}; 
insert the vertex y into FIFO; 

 end   
 else  
 search and colour the edge {x,y} 
red   
 else  
 delete the vertex x from FIFO; 
end; 
end. 

Applying the Breadth-First-Search it is evident 
that the blue coloured edges form a spanning tree T. 

 
Definition  
Let G be a connected undirected graph, let v be a 

vertex of G, and let T be its spanning tree gained by 
the Breadth-First-Search of G with the initial 
vertex v. An appropriate rooted tree (T, v) let us call 
a Breadth-First Search Tree (BFS Tree shortly) with 
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the root v, the edges of G that do not appear in BFS 
Tree let us call non-tree edges and the components 
of the forest T’ = (T, v) - v let us call (T, v)-subtrees. 

 
Theorem  
Let G be a connected undirected graph, let v be a 

vertex of G, and let (T, v) be a BFS Tree with the 
root v. Then the end-vertices of each non-tree edge 
of G belong either to the same level or to the 
adjacent levels of (T, v). 

 
Statement  
Let G be a connected undirected graph, let v be a 

vertex of G, and let (T, v) be a BFS Tree with the 
root v. Then the length of the shortest path from the 
vertex v to a vertex y in G is equal h(y), where h(y) 
is the level of (T, v) where the vertex y lies 
(supposing h(v)= 0). 

 
There are more statements following from the 

above mentioned theorem (an overview can be seen 
e.g. in [9]) however for the aim of this paper the 
introduced statement is sufficient.  

Both following puzzles of different difficulties 
can be successfully solved using BFS algorithm 
including the previous statement. A level of 
complexity to find out the appropriate graph-
representation of each puzzle is obvious. 

 
Puzzle 1 
Let us have a look at the Fig. 2. There are two 

types of cells (fields); white and black. The task is 
to find a way to move from the point S (Start) to the 
point P (Post) using the smallest number of steps 
possible keeping the following rules:  

• One step means to go on one cell. 
• Go either horizontally or vertically. 
• Do not enter nor go through black cells.  

 
Fig. 2 Picture to the given puzzle 1 

 
A graph representation to the task (see Fig. 4) can 

be easily done in the following way.  
Let us complete the Fig. 2 by numbers and letters 

to get Fig. 3.  
Then each cell is represented by the vertex Pc, 

where P∈{A, B, C, D} and c∈{1, 2, 3} and an edge 
is between each pair of vertices where the step 
defined by the above rules is possible.  

                   A     B     C     D 

 
Fig. 3 The Fig. 2 completed by numbers and letters 
 
 

 
Fig. 4 Graph representation to the puzzle 1 

 
 
Puzzle 2 
Let us have a look at the Fig. 5. There are three 

types of cells (fields); white, black and circle. The 
task is to find a way how to move from the point S 
to the point C using the smallest number of steps as 
possible keeping the following rules:  

• One step means to go on two (by the speed 2) 
or three (by the speed 3) cells. 

• Go either horizontally or vertically. 
• On S your speed is 2. As soon as you enter a 

circle, change the speed to 3 and as soon as you 
enter another circle, change the speed to 2 etc.  

• Do not enter nor go through black cells.  

(Note: You can enter the same cells more time.) 
 
 
 
 

 
 
 
 
 

 

 
Fig. 5 Picture to the given puzzle 2 

 
In this case a graph-representation of the task is 

not obvious immediately. It can be done in mind 
(the whole graph would be too large) in the 
following way: Let us complete the picture on Fig. 5 
by numbers and letters in the same way as in the 
puzzle 1 and imagine that each cell is represented 

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 47 Issue 2, Volume 12, February 2013



either by the vertex Pc2, or by the vertex Pc3, where 
P∈{A, B, C, D, E, F} and c∈{1, 2, …, 8}. The 
upper index determines the used speed. 

In this way a directed graph G is obtained. Its 
vertices are Pci, P∈{A, B, C, D, E, F}, c∈{1, 2, …, 
8}, i∈{2, 3}, and there is the directed edge from the 
vertex Xyz to the vertex Uvw in the graph G if and 
only if there exists a step from the vertex Xyz to the 
vertex Uvw defined by the above rules. 

 
Solution to the puzzles 1 and puzzle 2 
Using the Breadth-First Search to solve both 

tasks with regard to the Statement appropriate BFS 
Trees are obtained. A BFS Tree appropriate to the 
puzzle 1, i.e. a BFS Tree appropriate to the Breadth-
First-Search of the graph on Fig. 3 starting in the 
vertex A3 and a solution, i.e. the shortest path from 
the root A3 to the vertex D1 in the gained BFS tree, 
is obvious (one can even see all four shortest paths 
of the length 5).  

Here let us illustrate on Fig. 6 the needed part of 
the BFS tree appropriate to the puzzle 2 from which 
a solution, the shortest path from the vertex A82 (the 
cell S) to the vertex F1i (the cell C, which can be 
achieved either as the vertex F12 or as the vertex 
F13), is perceivable. 

 
Fig. 6 BFS Tree to the puzzle 2 

 
The first puzzle is really easy and students are 

able to solve it themselves on the lessons. However 
to solve second puzzle is much more difficult in 
regards on graph representation of the puzzle and 
solution itself. The second puzzle is therefore solved 
together with students on lectures or during lessons. 

3.2 Logical games 
The logical games are welcomed to diversify the 
lessons. We use the games, which solve two or three 
students together. For inspiration let us introduce 
two examples here. 

 
Game 1 - Sprouts 
Planar graphs, their planar representations 

respectively, can be practised in an enjoyable way 
using the game Sprouts. 

Sprouts is a simple game developed in 1967 by 
Michael Paterson and John Conway. The game is 
described by Baird and Schweitzer in the following 
way [3]:  

Sprouts is played by two players connecting spots 
with lines on a playing surface. The playing surface 
(piece of paper or computer screen) begins with n 
spots for the players to choose between. Players take 
turns connecting spots and adding a new spot along 
the drawn lines with the following constraints:  

• The line must not touch or cross itself or any 
other line.  

• The new spot cannot be on an endpoint of the 
line, and thus splits the line into two parts.  

• No spot can have more than three lines 
connected to it; note that when a new spot is 
created, it starts with two lines already 
connected to it. 

 Eventually, there are no legal moves remaining, and 
the player who makes the last move wins.  

 
Fig. 7 The game Sprouts beginning with two spots  

 
In the lesson two students solve the game on the 

blackboard and some particular solutions are 
discussed by the others. For example, in the Fig. 7 
(see [20]) a possible process of the game Sprouts 
with two starting spots is presented. This illustration 
of the game finishes with the last picture (with 
regard to the constraints no other step is possible) 
and discussion can start.  
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For example we discuss with students the 
question how to change the process described in the 
Fig. 7 to continue at least one step. Such a 
possibility is shown in the Fig. 8.  

 
Fig.8 Part of another solution that can continue 

 
With regard to this change we emphasize that 

joining green vertices on the last picture we get 
planar graph in both figures, but planar 
representation is gained only in the Fig. 8. 

 
 
Game 2 - HYCLE 
The 3-D computer game HYCLE (Hamiltonian 

cYCLE) is designed for one player and its goal is to 
find the Hamiltonian circle in the given graph: 
“Visit every vertex exactly once and end up where 
you started“. [21] Player can move the graph to 
improve his vision of vertices and edges. This 
feature can make the game easier, but also can 
confuse the player if he/she is not carful enough.  

HYCLE is a good tool not only for practising 
Hamiltonian graphs, but also for the development of 
spatial imagination. The game has fifteen levels and 
the difficulty of the given graph increases at each 
level (see Fig. 9).  

Students can try to play this game themselves at 
home. 

 
Fig. 9 Level 4 of HYCLE [21] 

 
It is well known that to determine whether a 

given graph is or is not Hamiltonian belongs to the 
NP problems. However, in lessons students practise 

this knowledge on small graphs only using the 
following simple rules to find out the result. 

• If a given graph has n vertices then a 
Hamiltonian circle has exactly n edges. 

• If a vertex v has degree k then Hamiltonian 
circle has to contain exactly two edges incident 
with the vertex v. 

• When constructing a Hamiltonian circle in a 
graph with n vertices no circle containing less 
than n vertices is allowed to be created (closed) 
during the process. 

• Once a constructed Hamiltonian circle contains 
two edges incident with a vertex v the 
remaining edges incident with the vertex v are 
excluded.  

 
To diversify lessons we let students to play the 

following modification of the above described game 
HYCLE. 

Our game is designed for two students. They take 
turns in including edges to a created Hamiltonian 
circle. Player who makes a mistake with regard to 
the given four rules lose, but only if the other player 
point it out. If a player makes a mistake and his 
partner doesn’t see it, both players lose 
(Hamiltonian circle cannot be created). The best 
result is achieved when the Hamiltonian circle is 
found and thus both players are winners. 

 
 

3.3 Multimedia program GrAlg 
In the section 2.2 we have already discussed how 
useful and important can be role of a multimedia 
program for self preparation of students to a subject. 

It is known that multimedia applications have 
substantially influenced education. They give 
teachers an excellent chance to demonstrate and 
visualize the subject matter more clearly and 
comprehensibly, as well as also enabling them to 
prepare study material for students which optimizes 
their study habits.  

We would like to emphasize that along with large 
software products dealing with a wide spectrum of 
objects developed by a team of professionals very 
important role play also various programs dealing 
with objects appropriate to course subject matter 
created on a script given by the teacher with regard 
to students needs similar as our program 
ALGORITHMS (cf. [19]).  

In the subjects dealing with graph theory and 
combinatorial optimization there is no problem in 
illustrating the needed concepts using graphs. 
However, it is very important to prepare suitable 
illustrative graphs and have the possibility to use 
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colours to emphasize characteristics of the explained 
concepts.  

In the subject Graph Theory and Combinatorial 
Optimization the essential tool used not only by 
students but also by teacher is the program GrAlg 
(Graph Algorithms) created in the Delphi 
environment by our student within his thesis [15].  

The main purpose of the application is the easy 
creation and modification of graphs and the 
possibility to emphasize with colours basic graph-
concepts and graph algorithms on graphs created 
within the program.  

Its big advantage is also the possibility to run 
programs visualizing all of the subject Graph 
Theory and Combinatorial Optimization explained 
algorithms on graphs in a way from which the 
whole process and used data structures can clearly 
be seen (see Fig. 10). 

 
Fig. 10 Program GrAlg – visualization of the 

Breadth-First Search algorithm 
 
Thanks to the fact that the program allows 

opening more than one window so that two (or 
more) objects or algorithms can be compared at 
once teachers can explain discussed problems from 
more points of view and show mutual relations 
among used concepts and algorithms.  

 
Moreover, the possibility to save each created 

graph in bmp format allows teachers easy insertion 
of needed graphs into the study material and thus 
saves their time when preparing text material and 
presentations (cf. the previous sections). 

 
 
4 Conclusion 
The paper is intended as an inspiration for all 
educators developing students’ algorithmic and 
logical thinking, the base of programming skills. 
Sometimes it is not easy to find an appropriate 
content and approach to teaching a subject and each 
inspiration could be valuable to know and possibly 
to apply. 
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