
Algorithmic and Logical Thinking Development: base of programming
skills

EVA MILKOVÁ

ANNA HŮLKOVÁ
Department of Informatics

Faculty of Science
University of Hradec Králové

Rokitanského 62
CZECH REPUBLIC

eva.milkova@uhk.cz, anna.hulkova@uhk.cz

Abstract: This paper is based on rich experience gained in the area of computer science education and
it could serve as an inspirational material directed to all educators developing students’ algorithmic
thinking and programming skills. The foundation a developer gains at the beginning of his/her career
plays a crucial role. An essential part of studies at faculties preparing students in the area of computer
science is the development of student’s ability to think algorithmically. Students must be able to
create various algorithms solving given problems starting with easy ones and consecutively increase
their algorithmic knowledge and shifts during studies till the level where they deeply understand much
more complex algorithms. The aim of this paper is to introduce our approach that has proven to be
successful in the optimization of teaching and learning a subject developing algorithmic thinking of
beginners. This is followed by a discussion of the benefits of puzzles and logical games, solved within
subjects, dealing with graph algorithms and enabling further development of students’ algorithmic
thinking as well as logical thinking and imagination, i.e. skills needed for deeper understanding more
complex algorithms.

Key-Words: Computer science education, logical games, multimedia applications, puzzles

1 Introduction
An essential part of studies at faculties preparing
students in the area of computer science is the
development of student’s ability to think
algorithmically. Students must be able to create
various algorithms solving given problems starting
with easy ones and consecutively increase their
algorithmic knowledge and shifts during studies till
the level where they deeply understand much more
complex algorithms.

Education at secondary schools and colleges in
the area of informatics is directed mainly to a user
attitude in the Czech Republic. Only students
attending optional subjects dealing with
programming languages are familiar with creating
algorithms. Thus a lot of students coming to
universities are without any algorithmic knowledge
at the beginning of their studies.

There are many different theoretical researches
which deal with the question of how to consequently
develop algorithmic thinking of students. Their

basic aim is to improve the quality of teaching and
students’ self-learning.

In this paper, as an inspiration, we introduce at

first our approach to the development of algorithmic
thinking of beginners within the subject Algorithms
and Data Structures. (Remark: Thanks to the fact,
that our approach has proven to be successful, we
have already introduced it at conferences, cf. [6],
[8], [13]).

It is followed by a discussion concerning further

development of algorithmic thinking by our students
within subject Graph Theory and Combinatorial
Optimization, where more complex algorithms on
graphs have been explained.

The principles that we apply in our teaching will

be introduced as well as some puzzles and logical
games developing students’ logical thinking and
imagination.

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 41 Issue 2, Volume 12, February 2013

mailto:eva.milkova@uhk.cz�

2 Algorithmic Thinking Development
University departments that train students in
computer-related disciplines still mostly teach the
algorithm design jointly with teaching a certain
programming language. Former textbooks such as
[5], [18] which were used at the Czech universities
in the past dealt with structured programming
languages. On the contrary, the recent trend is
directed mostly towards object oriented languages;
see e.g. [2], [4], [14], and [16]. However, at
conferences there have been still long discussions
regarding what kind of programming is suitable for
beginners. Protagonists of object oriented languages
argue that students beginning with structured
programming acquire habits that cause big problems
for them when using object oriented languages.

To avoid the mentioned possible problems, our
approach that we have been using for many years in
the subject Algorithms and Data Structures is based
on an imagination of a brick-box, where only
several base elements are available from which
children are able to create incredible buildings, i.e.
when we lead our students’ first steps in the creation
of algorithms we explain to them that it is like
building interesting objects out of just a few basic
elements. In the subject Algorithms and Data
Structures it means that we start our teaching with
basic algorithmic structures (basic elements from
the brick-box) and typical algorithmic structures (a
few parts made out of these elements) and then we
let students get into the secrets of making whole
algorithms (building whole constructions).

2.1 Lectures and lessons
We do not use any programming language in the
subject Algorithms and Data Structures, students
write algorithms on paper in Czech meta-language.
The used Czech meta-language is nothing more than
the Pascal programming language basic commands.
(Remark: We have decided for Pascal programming
language because it was created by Nicklaus Wirth
especially for educational purposes, see [18].)

At the lectures we explain all the structures of
algorithms, at first only those which use single
variables. We always try to use names of variables
that describe their use. Obviously, in the beginning
examples of algorithms are demonstrated
graphically by developing diagrams. In the diagrams
we use two types of shapes only: a rectangular for
commands and a rhombus for conditions. The action
of each algorithm is illustrated by a step-by-step
procedure for suitable initial values.

After a thorough exercise of basic algorithms on
problems using single variables (above all those
dealing with unknown number of vales, because
these tasks often trouble the students) we proceed
and explain the data structure one-dimensional array
and later two-dimensional array as well.
During lessons students apply the acquired
knowledge to a variety of tasks. After some time
when students have prepared their solutions on
paper, each task is illustrated by two or three
students at the blackboard and their solutions are
compared and discussed by all students. On the one
hand this means that students are led to try to find
more solutions to the given task and to be able to
understand the efficiency of algorithms as well. On
the other hand when incorrect solutions occur
among the presented solutions the teacher has an
opportunity to discuss with students where the
problem is.

2.2 Self-study and the feedback
There is an important question. How can students
get feedback for their solutions written on paper in
the Czech meta-language when studying at home?
There are a lot of tasks that we give our students to
solve. They solve not only the whole tasks but we
also let them complete prepared algorithms and
determine values of variables similarly as you can
see in the following examples.

Example 1 (single variables)
Complete the algorithm which calculates and

writes out the following value of sum:
If x ≤ y then it is the sum of numbers

x, x + 1, …, y, and if x > y then it is the sum of
numbers x, x - 1, …, y.
begin
 read(x);
 read(y);
 sum :=;
 number := x;
 if x y then
 for number := to do
 sum := sum +
 else
 while number y do
 begin
 sum := sum +;
 number := number - 1;
 end;
 write("The sum of integers from
",x," to ",y," is equal to", sum,
".");
end.

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 42 Issue 2, Volume 12, February 2013

Example 2 (one-dimensional array)
Complete the algorithm solving the following

task. In the sequence of n integers saved in the array
a (in items a[1] , ..., a[n]) determine the first
minimum value and then sum all integers behind the
found minimum value.
begin
 minimum := a[1];
 sum :=;
 for i from 2 to n do
 begin
 sum := sum +;
 if a[i] ... min then
 begin
 minimum :=;
 sum :=;
 end;
 end;
end.

Example 3 (single variables)
Determine what value will appear in variables x,

y, and z after carrying out the following algorithm
begin
 x := 1;
 y := 3;
 z := x * y;
 while z < 8 do
 z := z + 2;
 if x > y then
 y := x + y;
end.

x = y = z =

Example 4 (one-dimensional array)
There are n integers saved in the array a (see the

Table 1). Determine the values in the array a after
finishing the following algorithm. Write them to the
table.
begin

n:=6;
x:=a[1];

 i := 2;
 while i ≤ n - 1 do
 begin
 if a[i] > x then
 begin
 a[1]:= a[i];
 a[i]:= x;
 end;
 i := i + 1;
 end;
end.

a[1] a[2] a[3] a[4] a[5] a[6]
11 8 19 7 16 17

Table 1 Table of integers saved in the array a

Example 5 (two-dimensional array)
Integers are saved in the two-dimensional

array a. Determine the values in the array a after
finishing the following algorithm. Write them to the
table Final position (see the Table 2).
begin
 m := 4;
 for i := 1 to m do
 for j := 1 to m - i + 1 do
 a[i,j] := (i + j) mod 2;
end.

Starting
position

Final position

 1 2 3 4 1 2 3 4

1 1 2 5 8 1

2 3 9 6 7 2

3 8 7 5 3 3

4 4 2 5 8 4

Table 2 Table of integers saved in the array a

The answer to the question given at the beginning
of this section is: Students can practise their
knowledge using program ALGORITHMS
developed by our student within his thesis [16] in
the Delphi environment.

Using the program, students can place their
solution of the given task, written in Czech meta-
language, into the program and the program shows
them step-by-step how their algorithm works and if
it is correct or not.

The program also shows the actual values of used
variables in each step of the algorithm’s process. In
this way students can place prepared algorithms
given in tasks (cf. examples 3-5 above) into the
program and see the final values of requested
variables.

Moreover, using the program on lessons mistakes
in incorrect algorithms can be emphasized on
suitable entrance dates together with the values of
used variables (cf. text in the section 2.1 above: On
the other hand when incorrect solutions occur
among the presented solutions the teacher has an
opportunity to discuss with students where the
problem is.).

The program ALGORITHMS is user friendly and

its functions are arranged to be intuitive and at the

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 43 Issue 2, Volume 12, February 2013

same time to remind professional editors and
debuggers of well-known programming languages,
which also facilitates the subsequent transition to
them. Because many users are beginners the
program is free of many unnecessary features which
would rather complicate its use at this level.

With the ability to be localized into different
languages the program can theoretically be used in
the user´s own mother tongue, including the
possibility to define own keys of used meta-
language. [11]

The design of the program is shown on Fig. 1.

Fig. 1 Program ALGORITHMS - main window
with an algorithm

3 Development of Logical Thinking
Logical thinking is an important foundation skill.
Albrecht in his book [1] says that the basis of all
logical thinking is sequential thought. This process
involves taking the important ideas, facts, and
conclusions involved in a problem and arranging
them in a chain-like progression that takes on a
meaning in and of itself. To think logically is to
think in steps.

Let us add that sequential thought can be
enhanced through the development of algorithmic
thinking and that algorithmic thinking can be deeply
enhanced in the subjects dealing with combinatorial
optimization.

Thus after gaining deep insight into the creation
of basic algorithmic constructions in the subject
Algorithms and Data Structure and practising the
acquired knowledge within subjects dealing with
programming languages, students’ logical and
algorithmic thinking is deepened in the subject
Graph Theory and Combinatorial Optimization. The
aim of the subject is not only to develop and deepen
students’ capacity for logical and algorithmic
thinking, but also to develop student’s imagination.

Well-prepared students should be able to describe
various practical situations with the aid of graphs,
solve the given problem expressed by the graph, and
translate the solution back into the initial situation.
[9]

Our approach can be characterized by the
following basic principles that we apply in our
teaching.
• When starting an explanation of new subject

matter, a particular problem with a real life
example or puzzle is introduced as a motivation
and suitable graph-representation of a problem
is discussed.

• If possible, each concept and problem is
examined from more than one point of view
and various approaches to the given problem
solution are discussed with respect to the
already explained subject matter.

• In addition to words visualization of the
particular issue as well as it is possible is done.

• The explained topic is thoroughly practiced and
students’ own examples describing the topic are
discussed.

• Using the constructed knowledge and suitable
modification of the problem solution, we
proceed to new subject matter.

In the following sections let us focus on the role

of suitable puzzles and logical games used in
education of the discussed subject at first.

On several puzzles of different level of
difficulties we discuss a possibility how to enhance
the students’ ability to find out the appropriate
graph-representation of given task (i.e. how to
develop their logical thinking and imagination) and
together solve it using appropriate algorithm (i.e.
how to develop their algorithmic thinking). Using
logical games we can also practise and discuss
various topics in an enjoyable way. Two logical
games will be introduced.

The section ends with brief description of a
multimedia program that is not only a substantial
help to students in their self-study but it also helps
teacher explain all needed concepts and the process
of particular algorithms on lectures and seminars.

3.1 Puzzles
In this section we introduce at first two puzzles,
chosen from the Czech semi-monthly magazine
Hádanka a Křížovka (Riddle and Crossword
puzzle in English), suitable to be solved in topic of
graph theory dealing with isomorphism.

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 44 Issue 2, Volume 12, February 2013

Isomorphism is an important basic graph theory
concept explained in any textbook dealing with
graph theory. Let us remind ourselves of its
definition [1]:

Two graphs G = (V, E) and G*= (V*, E*) are
called isomorphic if a bijection f: V → V* exists
such that {x, y} ∈ E if and only if {f(x), f(y)} ∈ E*
holds for all x, y ∈V, x ≠ y.

A simple explanation of isomorphism is that two
graphs are isomorphic if they have the same
“structure” and differ only by the names of their
vertices and edges. A nice motivation suitable to the
concept is given in the following puzzle.

Detective office
Two detectives investigated the same group of

people and used graph-representation for the
relation between each pair of people who know each
other. The first detective represented the people by
letters, the other detective by numbers (see Fig. 1
and Fig. 2). Our task is to find out the connection
between their graph-representations.

Fig. 1 The first graph-representation

Fig. 2 The other graph-representation

To solve this simple puzzle, an isomorphism

must be found between the two graphs illustrated in
the figures above. The puzzle doesn’t demand a
graphical interpretation of the given task because it
is set directly in the graphs. The solution can be
found quiet easily considering the degrees of
vertices.

The following puzzle is more complex (cf. [9]
[12]) particularly in regards to finding out an
appropriate graph representation of the task.

Cities
Try to place the names of cities Atlanta, Berlin,

Caracas, Dallas, Lima, London, Metz, Nairobi, New
York, Paris, Quito, Riga, Rome, Oslo and Tokyo
into the frames of the given map (Fig. 3) so that no
city shares any letter in its name with any cities in
its adjacent frames (horizontal or vertical).

To solve this puzzles using graph theory it is
necessary first to make a graph-representation of the
map and also of the relation between two cities that
do not contain the same letter in their names (see
Fig. 4 and Fig. 5), and then to find an isomorphism
between the graph representing the map and a
subgraph of the graph representing the relation.

Fig. 3 Map of the puzzle Cities

Fig. 4 Graph-representation of the map given in the

puzzle Cities

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 45 Issue 2, Volume 12, February 2013

Fig. 5 Graph-representation of the relation given

in the puzzle Cities

The map and also the determined relation

between two cities have obvious graph-
representation for everyone experienced in graph
theory.

However, to consider the given rule as the
relation “be adjacent” defined as “city x is adjacent
with city y if there is no same letter in their names”
and find out the appropriate graph-representation,
i.e. a graph, whose vertices represent the cities and
edges corresponding with the relation “be adjacent”,
cause students mostly difficulty because the puzzle
Cities is introduced in the subject in one of the first
lessons. The puzzle serves as a very useful first step
into the development of students’ ability to „see“
graph-representation of a task.

Considering the vertices with the biggest degree

and their neighbors (vertex 6 with the degree of 7
must correspondent with vertex Me, the only vertex
with a degree larger or equal to 7) there is no
problem changing the view of the graph given in
Fig. 5 to form another view (see Fig. 6) from which
the solution (see Fig. 7), i.e. subgraph isomorphic to
the graph on the Fig.4, is quite clear.

Fig. 6 Another picture of Fig. 5

Fig. 7 Solution of the puzzle Cities

Before we start to deal with the others puzzles let us
briefly remind the well-known Breadth-First-Search
algorithm. We describe it using Czech meta-
language (see the section 2.1) and as an edge
colouring process. We also introduce the definition
of the Breadth-First-Search Tree, appropriate
theorem and statement discussed thereinafter in this
paper.
begin
initially all vertices and edges of
the given connected undirected graph
G, with n vertices and m edges, are
uncoloured. Choose any single vertex,
insert it into FIFO, colour it blue
and search it.
while FIFO is not empty do
begin
 choose the first vertex x in FIFO;
 if there is an uncoloured edge {x,y}
 then
 if the vertex y is uncoloured then
 begin

search and colour blue both the
vertex y and the edge {x,y};
insert the vertex y into FIFO;

 end
 else
 search and colour the edge {x,y}
red
 else
 delete the vertex x from FIFO;
end;
end.

Applying the Breadth-First-Search it is evident
that the blue coloured edges form a spanning tree T.

Definition
Let G be a connected undirected graph, let v be a

vertex of G, and let T be its spanning tree gained by
the Breadth-First-Search of G with the initial
vertex v. An appropriate rooted tree (T, v) let us call
a Breadth-First Search Tree (BFS Tree shortly) with

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 46 Issue 2, Volume 12, February 2013

the root v, the edges of G that do not appear in BFS
Tree let us call non-tree edges and the components
of the forest T’ = (T, v) - v let us call (T, v)-subtrees.

Theorem
Let G be a connected undirected graph, let v be a

vertex of G, and let (T, v) be a BFS Tree with the
root v. Then the end-vertices of each non-tree edge
of G belong either to the same level or to the
adjacent levels of (T, v).

Statement
Let G be a connected undirected graph, let v be a

vertex of G, and let (T, v) be a BFS Tree with the
root v. Then the length of the shortest path from the
vertex v to a vertex y in G is equal h(y), where h(y)
is the level of (T, v) where the vertex y lies
(supposing h(v)= 0).

There are more statements following from the

above mentioned theorem (an overview can be seen
e.g. in [9]) however for the aim of this paper the
introduced statement is sufficient.

Both following puzzles of different difficulties
can be successfully solved using BFS algorithm
including the previous statement. A level of
complexity to find out the appropriate graph-
representation of each puzzle is obvious.

Puzzle 1
Let us have a look at the Fig. 2. There are two

types of cells (fields); white and black. The task is
to find a way to move from the point S (Start) to the
point P (Post) using the smallest number of steps
possible keeping the following rules:

• One step means to go on one cell.
• Go either horizontally or vertically.
• Do not enter nor go through black cells.

Fig. 2 Picture to the given puzzle 1

A graph representation to the task (see Fig. 4) can

be easily done in the following way.
Let us complete the Fig. 2 by numbers and letters

to get Fig. 3.
Then each cell is represented by the vertex Pc,

where P∈{A, B, C, D} and c∈{1, 2, 3} and an edge
is between each pair of vertices where the step
defined by the above rules is possible.

 A B C D

Fig. 3 The Fig. 2 completed by numbers and letters

Fig. 4 Graph representation to the puzzle 1

Puzzle 2
Let us have a look at the Fig. 5. There are three

types of cells (fields); white, black and circle. The
task is to find a way how to move from the point S
to the point C using the smallest number of steps as
possible keeping the following rules:

• One step means to go on two (by the speed 2)
or three (by the speed 3) cells.

• Go either horizontally or vertically.
• On S your speed is 2. As soon as you enter a

circle, change the speed to 3 and as soon as you
enter another circle, change the speed to 2 etc.

• Do not enter nor go through black cells.

(Note: You can enter the same cells more time.)

Fig. 5 Picture to the given puzzle 2

In this case a graph-representation of the task is

not obvious immediately. It can be done in mind
(the whole graph would be too large) in the
following way: Let us complete the picture on Fig. 5
by numbers and letters in the same way as in the
puzzle 1 and imagine that each cell is represented

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 47 Issue 2, Volume 12, February 2013

either by the vertex Pc2, or by the vertex Pc3, where
P∈{A, B, C, D, E, F} and c∈{1, 2, …, 8}. The
upper index determines the used speed.

In this way a directed graph G is obtained. Its
vertices are Pci, P∈{A, B, C, D, E, F}, c∈{1, 2, …,
8}, i∈{2, 3}, and there is the directed edge from the
vertex Xyz to the vertex Uvw in the graph G if and
only if there exists a step from the vertex Xyz to the
vertex Uvw defined by the above rules.

Solution to the puzzles 1 and puzzle 2
Using the Breadth-First Search to solve both

tasks with regard to the Statement appropriate BFS
Trees are obtained. A BFS Tree appropriate to the
puzzle 1, i.e. a BFS Tree appropriate to the Breadth-
First-Search of the graph on Fig. 3 starting in the
vertex A3 and a solution, i.e. the shortest path from
the root A3 to the vertex D1 in the gained BFS tree,
is obvious (one can even see all four shortest paths
of the length 5).

Here let us illustrate on Fig. 6 the needed part of
the BFS tree appropriate to the puzzle 2 from which
a solution, the shortest path from the vertex A82 (the
cell S) to the vertex F1i (the cell C, which can be
achieved either as the vertex F12 or as the vertex
F13), is perceivable.

Fig. 6 BFS Tree to the puzzle 2

The first puzzle is really easy and students are

able to solve it themselves on the lessons. However
to solve second puzzle is much more difficult in
regards on graph representation of the puzzle and
solution itself. The second puzzle is therefore solved
together with students on lectures or during lessons.

3.2 Logical games
The logical games are welcomed to diversify the
lessons. We use the games, which solve two or three
students together. For inspiration let us introduce
two examples here.

Game 1 - Sprouts
Planar graphs, their planar representations

respectively, can be practised in an enjoyable way
using the game Sprouts.

Sprouts is a simple game developed in 1967 by
Michael Paterson and John Conway. The game is
described by Baird and Schweitzer in the following
way [3]:

Sprouts is played by two players connecting spots
with lines on a playing surface. The playing surface
(piece of paper or computer screen) begins with n
spots for the players to choose between. Players take
turns connecting spots and adding a new spot along
the drawn lines with the following constraints:

• The line must not touch or cross itself or any
other line.

• The new spot cannot be on an endpoint of the
line, and thus splits the line into two parts.

• No spot can have more than three lines
connected to it; note that when a new spot is
created, it starts with two lines already
connected to it.

 Eventually, there are no legal moves remaining, and
the player who makes the last move wins.

Fig. 7 The game Sprouts beginning with two spots

In the lesson two students solve the game on the

blackboard and some particular solutions are
discussed by the others. For example, in the Fig. 7
(see [20]) a possible process of the game Sprouts
with two starting spots is presented. This illustration
of the game finishes with the last picture (with
regard to the constraints no other step is possible)
and discussion can start.

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 48 Issue 2, Volume 12, February 2013

For example we discuss with students the
question how to change the process described in the
Fig. 7 to continue at least one step. Such a
possibility is shown in the Fig. 8.

Fig.8 Part of another solution that can continue

With regard to this change we emphasize that

joining green vertices on the last picture we get
planar graph in both figures, but planar
representation is gained only in the Fig. 8.

Game 2 - HYCLE
The 3-D computer game HYCLE (Hamiltonian

cYCLE) is designed for one player and its goal is to
find the Hamiltonian circle in the given graph:
“Visit every vertex exactly once and end up where
you started“. [21] Player can move the graph to
improve his vision of vertices and edges. This
feature can make the game easier, but also can
confuse the player if he/she is not carful enough.

HYCLE is a good tool not only for practising
Hamiltonian graphs, but also for the development of
spatial imagination. The game has fifteen levels and
the difficulty of the given graph increases at each
level (see Fig. 9).

Students can try to play this game themselves at
home.

Fig. 9 Level 4 of HYCLE [21]

It is well known that to determine whether a

given graph is or is not Hamiltonian belongs to the
NP problems. However, in lessons students practise

this knowledge on small graphs only using the
following simple rules to find out the result.

• If a given graph has n vertices then a
Hamiltonian circle has exactly n edges.

• If a vertex v has degree k then Hamiltonian
circle has to contain exactly two edges incident
with the vertex v.

• When constructing a Hamiltonian circle in a
graph with n vertices no circle containing less
than n vertices is allowed to be created (closed)
during the process.

• Once a constructed Hamiltonian circle contains
two edges incident with a vertex v the
remaining edges incident with the vertex v are
excluded.

To diversify lessons we let students to play the

following modification of the above described game
HYCLE.

Our game is designed for two students. They take
turns in including edges to a created Hamiltonian
circle. Player who makes a mistake with regard to
the given four rules lose, but only if the other player
point it out. If a player makes a mistake and his
partner doesn’t see it, both players lose
(Hamiltonian circle cannot be created). The best
result is achieved when the Hamiltonian circle is
found and thus both players are winners.

3.3 Multimedia program GrAlg
In the section 2.2 we have already discussed how
useful and important can be role of a multimedia
program for self preparation of students to a subject.

It is known that multimedia applications have
substantially influenced education. They give
teachers an excellent chance to demonstrate and
visualize the subject matter more clearly and
comprehensibly, as well as also enabling them to
prepare study material for students which optimizes
their study habits.

We would like to emphasize that along with large
software products dealing with a wide spectrum of
objects developed by a team of professionals very
important role play also various programs dealing
with objects appropriate to course subject matter
created on a script given by the teacher with regard
to students needs similar as our program
ALGORITHMS (cf. [19]).

In the subjects dealing with graph theory and
combinatorial optimization there is no problem in
illustrating the needed concepts using graphs.
However, it is very important to prepare suitable
illustrative graphs and have the possibility to use

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 49 Issue 2, Volume 12, February 2013

colours to emphasize characteristics of the explained
concepts.

In the subject Graph Theory and Combinatorial
Optimization the essential tool used not only by
students but also by teacher is the program GrAlg
(Graph Algorithms) created in the Delphi
environment by our student within his thesis [15].

The main purpose of the application is the easy
creation and modification of graphs and the
possibility to emphasize with colours basic graph-
concepts and graph algorithms on graphs created
within the program.

Its big advantage is also the possibility to run
programs visualizing all of the subject Graph
Theory and Combinatorial Optimization explained
algorithms on graphs in a way from which the
whole process and used data structures can clearly
be seen (see Fig. 10).

Fig. 10 Program GrAlg – visualization of the

Breadth-First Search algorithm

Thanks to the fact that the program allows

opening more than one window so that two (or
more) objects or algorithms can be compared at
once teachers can explain discussed problems from
more points of view and show mutual relations
among used concepts and algorithms.

Moreover, the possibility to save each created

graph in bmp format allows teachers easy insertion
of needed graphs into the study material and thus
saves their time when preparing text material and
presentations (cf. the previous sections).

4 Conclusion
The paper is intended as an inspiration for all
educators developing students’ algorithmic and
logical thinking, the base of programming skills.
Sometimes it is not easy to find an appropriate
content and approach to teaching a subject and each
inspiration could be valuable to know and possibly
to apply.

Acknowledgment
This research has been partially supported by
the Specific Research Project of the University
of Hradec Králové No. 2109.

References:
[1] Albrecht, K.: Brain Building: Easy Games to

Develop Your Problem Solving Skills, Prentice
Hall, 1984.

[2] Arlow J, Neustadt I.: UML a unifikovaný
proces vývoje aplikací. Computer Press, 2003.

[3] Baird, L., Schweitzer, D.: Complexity of the
Game of Sprouts., in Hamid R. Arabnia;
George A. Gravvanis & Ashu M. G. Solo, ed.,
'FCS', CSREA Press, 2010, pp. 177-182.

[4] Herout, P.: Učebnice jazyka Java. KOPP:
České Budějovice, 2000.

[5] Jinoch J, Műller K, Vogel J.: Programování
v Pascalu. SNTL: Praha, 1986.

[6] Milková, E.: Algorithms: The Base of
Programming Skills. In: ITI 2007 Proceedings
of the 29th International Conferences on
INFORMATION TECHNOLOGY INTER-
FACES, University of Zagreb, Croatia 2007,
pp. 765 – 770.

[7] E. Milková at al., Algoritmy – základní
konstrukce v příkladech a jejich vizualizace (in
English: Algorithms – basic constructions and
their visualization), Gaudeamus, Hradec
Králové, 2010, s. 98.

[8] Milková, E.: Multimedia Applications and their
Benefit for Teaching and Learning at
Universities, WSEAS TRANSACTIONS on
Information Science & Applications, Issue 6,
Vol. 5, June 2008, pp. 869-879.

[9] Milková, E., Constructing Knowledge in Graph
Theory and Combinatorial Optimization,
WSEAS TRANSACTIONS on MATHEMATICS,
vol. 8, no. 8, 2009, pp. 424-434.

[10] Milková, E.: BFS Tree and x-y Shortest Paths
Tree. In: Applied Computer Science,
Proceedings of International Conference on
Applied Computer Science (ACS), WSEAS
Press, Malta, September 15-17, 2010, pp. 391–
395.

[11] Milková, E.: Multimedia Tools for the
Development of Algorithmic Thinking. Recent
Patents on Computer Science, Vol. 4, No. 2,
2011, pp. 98- 107.

[12] Milková, E., Development of logical thinking
in enjoyable way. In: Efficiency and
Responsibility in Education 2011, Czech

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 50 Issue 2, Volume 12, February 2013

University of Life Sciences Prague, 2011, pp.
221-229.

[13] Milková, E.: Development of Algorithmic
Thinking and Imagination: base of
programming skills, In: Proceedings of 16th
WSEAS International Conference on
Communications and Computers (Part of
CSCC’12), WSEAS Press, Kos Island, Greece,
July 14-17, 2012, pp. 68–72.

[14] Pecinovský R.: Myslíme objektově v jazyku
Java 5.0. Grada: Praha, 2004.

[15] Šitina, J.: Grafové algoritmy – vizualizace,
Hradec Králové: thesis, 2010.

[16] Virius M.: Java pro zelenáče. Neocortex:
Praha, 2001.

[17] Voborník, P.: Programovací jazyk pro podporu
výuky algoritmů, Hradec Králové: thesis, 2006.

[18] Wirth N.: Algoritmy a datové štruktúry údajov.
Alfa: Bratislava, 1989.

[19] XUE-YING MA, BIN-KUI SHENG:
Designing Test Engine for Computer-Aided
Software Testing Tools, WSEAS
TRANSACTIONS on COMPUTERS, vol. 10,
no. 5, 2011, pp. 135-145.

[20] http://en.wikipedia.org/wiki/Sprouts_(game)
[21] http://hry.czin.eu/48443-Hycle.html

WSEAS TRANSACTIONS on COMPUTERS Eva Milková, Anna Hůlková

E-ISSN: 2224-2872 51 Issue 2, Volume 12, February 2013

http://en.wikipedia.org/wiki/Sprouts_(game)�

